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In this paper we examined the role of suction/injection on time-dependent electromagnetohydrodynamic 
(EMHD) natural (free) convection flow in a vertical microchannel with electroosmotic effect. With the aid of the 
Laplace transformation method, the governing energy and momentum equations are converted from partial 
differential equations (PDEs into ordinary differential equations (ODEs) to obtain fluid temperature and velocity 
in the Laplace domain. The semi-analytical solutions of the velocity profile and temperature distribution have been 
derived using the Riemann sum approximation. Then a MATLAB program was written to study the effects of the 
Prandlt number Pr, Hartmann number Ha, electric field strength in the x and z directions respectively (Ēx and Sz) 
and the impact of the Grashof number Gr on fluid velocity, temperature, skin-friction and mass flow rate in terms 
of line graphs. The results show the role of suction/injection parameter altering the temperature distribution and 
velocity profile, and also how the governing parameters contribute to the flow formation.  
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1. Introduction 

 
 Magnetohydrodynamics (MHD) as one of the most important fields in fluid mechanics. It includes 
investigating how magnetic and electric forces affect the flow of electrically conducting liquids [1]. The 
Lorentz force-driven flow known as a magnetohydrodynamic flow is produced when an electrically conducting 
fluid interacts with a vertical magnetic field [2]. A few of the amazing advantages of the MHD micropump 
include pumping watery solutions, flow pumping, flow control, fluid mixing, thermal reactors, micro-coolers, 
forward and backward flow, chemical processes, ease of production, etc. [3]. MHD pump can be used in 
microfluidic devices due to its benefits over traditional pressure-driven flow and significant progress in the 
shrinking of fluidic systems, making it one of the most appealing study topics in microfluidic technology [4]. 
The MHD pump not only regulates flow and pumping, but also produces a complex secondary fluid with the 
help of mixing and string [5]. Numerous experimental, analytical, and computational research studies on MHD 
flow in microchannels have been described in the literature. Jang and Lee [2] found experimentally that the 
average flow rate increased when the magnetic field weakened. A microfluidic pump with an AC MHD 
propulsion mechanism was created by Lemoff and Lee [6]. Chakraborty and Paul [7] hypothetically 
investigated the combined effects of an MHD and elctroosmotic (EO) flow using parallel plate microchannels, 
in comparison to the scenario when magnetic effects are completely absent, they discovered that larger 
volumetric flow rates may be attained with a far lower electrical field. Sarkar and Ganguly [8] examined an 
MHD flow of nanofluids through a microchannel. They developed closed-form analytical equations for 
temperature distributions, Nusselt number, and velocity. In order to determine the perturbation solutions of the 
velocity and volume flow rate of the MHD EO flow with corrugated walls, Buren et al. [9] employed the 
perturbation expansion technique, which is characterized by a small amplitude periodic sinusoidal wave. 
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Moghaddam [10] carried out a numerical analysis of MHD micropumps using the power-law model. When 
the Hartmann number is less than a threshold value, shear-thinning fluids flow at a slower pace than Newtonian 
fluids. The opposite is true for shear-thinning fluids when the Hartmann number is greater than the critical 
threshold. In recent times, Xie and Jian [11] used the limited contrast technique to numerically examine 
pivoting MHD stream of power-law liquids through a limit microchannel. 
 Electroosmotic flow (EOF) is one of the powerful transportation methods which is activated by the 
application of an external electric field across a microchannel. Its future uses are extremely promising. As 
fluidic systems become gradually miniaturized, some of the most appealing study fields in microfluidic 
technology have been developed due to EOF's many advantages over a traditional pressure-driven flow and 
their potential uses in microfluidic devices [12]. The electric field produced by electroosmotic direct current 
(DC) causes the electroosmotic flow. The alternating current (AC) electric field is coupled to the time and 
frequency-dependent electroosmotic flow. Electroosmosis has a significant effect on fluid movement in the 
case of the AC electric field across the channels (Yang et al. [13] and Luo et al. [14]). Numerous attempts 
have been made to analyze the EOF of Newtonian and non-Newtonian fluid flows in parallel, circular, 
rectangular, and other irregularly shaped microchannels [15]. The impact of the buoyance force, wall 
asymmetric heat fluxes, and steady natural convection with electrokinetic effect in an electroosmotic flow was 
investigated by Oni and Jha [16]. Regardless of the size of the buoyance force, their conclusion demonstrates 
that the skin-friction and mass flow rate in the microchannel would have been overestimated by roughly 37% 
and 30%, respectively, if the slip-condition at the microchannel walls had not been taken into account. In order 
to induce Joule heat with EOF, the accuracy and effectiveness of electrokinetic sample manipulation will be 
reduced [17, 18]. A time-dependent electroosmotic flow of viscoelastic fluids via a parallel plate microchannel 
with a constant pressure gradient and a vertical magnetic field was studied by Wang et al. [19]. In a rectangular 
cross-sectional 2D-channel, Yang and Kwok [20] and Kang et al. [21] created a pressure-driven flow and a 
time-dependent electrokinetic slippage flow to counterbalance the impacts of the electric double layer (EDL). 
Jayaraj et al. [22] made a flow analysis and mixing in various microchannel geometries. Many theoretical and 
practical experiments have been carried out in to examine the EOF in the presence of a magnetic field. The 
combined effects of an electric field and a magnetic field are expected to be particularly effective in 
transporting and controlling fluid samples in microfluidic devices. Chakraborty and Paul [23] studied the 
combined impacts of MHD and EO forces using a parallel plate microchannel and analyzed the impact of near-
wall interaction potentials and the associated migrative fluxes on the flow. According to the studies, an electro-
magneto-hydrodynamic (EMHD) effect paired with an EDL might improve the flow rate in microchannels. 
Jang and Lee [24] performed an experimental research with micropumps in a setting with a weak magnetic 
field to demonstrate that the flow rate rises significantly. Jian et al. [25] examined the effects of transient 
EMHD micropumps on two infinite parallel plates. The Lorentz force controls the flow for both the AC and 
DC EMHD pumps. The effects of electric and magnetic fields on the thermally developing mixed 
electroosmotic transport, pressure-driven nanofluid flow, viscous dissipation, and Joule heating in a 
microchannel were studied by Ganguly et al. [26] in a microchannel under the influence of electric and 
magnetic fields. They determined the velocity, temperature, and Nusselt number in the presence of the volume 
% of dispersed nanoparticles and particle agglomerations using the no-slip speed and no-jump temperature 
boundary conditions. Mirza et al. [27] theoretically investigated a transient electro-magnetohydrodynamic 
two-phase blood flow through a capillary tube. They considered the no-slip boundary condition, the pressure 
gradient, and the Joule heating effect with constant heat flow. Without minimizing the impacts of viscous 
dissipation, EDL, external electric and magnetic fields, or fluid flow via cylinder-shaped microchannels, their 
research established the thermal transport features of the fluid flow. When dealing with an externally applied 
magnetic field in a parallel plate microchannel, Tso and Sundaravadivelu [28] took into consideration the 
transverse electric field while neglecting EDL effects to study the impact of the electromagnetic field on the 
surface tension-driven flow. Duwairi and Abdullah [29] and Shit et al. [30] investigated the two-dimensional 
velocity and temperature distributions of an electro-magneto-hydrodynamic (EMHD) micropump. They 
considered thermal radiation, electromagnetic field-induced EDL effects, and Joule heating effects without 
viscous dissipation. Kiyasatfar and Pourmahmoud [31] studied the MHD non-Newtonian electroosmotic flow 
in a square microchannel in the presence of viscous dissipation and Joule heating effects using a computational 
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technique based on the finite difference method. Liu et al. [32] and Mondal et al. [33] analyzed the EMHD 
flow velocity and heat transfer in a curved rectangular microchannel in the presence of a vertical electric field 
and radial magnetic field. They confirmed that the temperature and velocity distributions have a significant 
impact on the pace of entropy creation. Sheikholeslami and Ganji [34] studied the magnetohydrodynamics in 
a nanofluid flow between two parallel plate sheets. In their analysis, they took into account both viscous 
dissipation and Joule heating. In their study of the magnetic field impact on a nanofluid moving buoyantly 
across an expanding sheet, Dogonchi and Ganji [35] showed that as thermal radiation rose, temperature fell. 
They showed that temperature and velocity decrease as thermal radiation rises. Mahapatra and Bandopadhyay 
[36] combined the pressure-driven and electroosmotic Oldroyd-B fluid in microchannels. They focused on the 
velocity slip flow at high zeta potential and thin EDL. 
 The time-dependent MHD free-convection flow controlled by the effect of injection or suction has 
been extensively studied recently. When fluid particles are injected through a porous wall, the drag on the 
boundary surfaces and the heat transfer coefficients generally seem to be increased, however, an opposite 
tendency is seen when suction is applied to the porous wall. Chemical reactions employ suction to remove 
reactants, and injection to supply reactants, chill the surface, stop corrosion or scaling, and lessen drag [37]. 
The impact of suction and injection on a Couette flow with varying parameters was demonstrated by Attia 
[38]. Magnetohydrodynamic oscillatory flow in a planar porous channel with suction and injection was 
theoretically analyzed by Ahmed and Khatun [39]. Magyari and Chamkha [40] offered a complete analytical 
solution to the combined impact of heat generation or absorption and first-order chemical reaction on 
micropolar fluid. Rundora and Makinde [41] studied the effects of suction/injection on unstable reactive 
temperature dependent viscosity in a porous channel filled with saturated porous media. Hamid et al. [42] used 
suction and injection to demonstrate the effects of radiation. Joule heating, and viscous dissipation on an MHD 
Marangoni convection across a flat surface. Ghasemi et al. [43] most recently used the least-squares approach 
to study an electrohydrodynamic flow in a circular cylindrical conduit. The impact of nonuniform single and 
double slot suction/injection on a steady mixed convection boundary layer flow around a vertical cone was 
examined by Ravindran and Ganapathirao [44]. 
 Based on the aforementioned studies, the objective of this work is to investigate the impact of 
suction/injection on a transient electromagnetohydrodynamic natural convection flow with an electroosmotic 
effect in a vertical channel. 
 
2. Method  
 
2.1. Mathematical formulation 
 
 In a transient electromagnetohydrodynamic natural convection flow in a micro-channel, the 
suction/injection impact of viscous incompressible fluids is taken into account. Figure 1 depicts the physical 
layout and the coordinate system of the issue.  Let us assume that the channel's length " "L  is significantly 
bigger than its height " "H  and width" "W , that is   and L H L W> > . Therefore, it is feasible to disregard the 
velocity in the z direction. A homogeneous magnetic field ( ) , , yB 0 B 0=


 and two direct current electrical field

( )   , , x zE E 0 E= −


 are utilized. The velocity field is ( )( )  , , , U u y t 0 0=


. The flow is produced by the interaction 
of the Lorentz force and electrical body force. The direct current electrical field and net density charge create 
the electrical body force  eEρ


 and the product of the electric current and the magnetic field generates the 

Lorentz force  J B×
 

, where J


 = σ ( E


 + U


 ×  B


) is determined according to Ohm's equation, and σ  as is 
the electrical conductivity of the fluid. 
The Boltzmann-Poisson equation is the same as in Saha and Kundu [45] in dimensionless form: 
 

  
2

2
2

d K 0
dY

ψ − ψ = . (2.1) 
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Fig.1. Visualization of the natural convection flow in a vertical parallel plate microchannel of 

electromagnetohydrodynamic fluid with suction/injection wall 
 
Together with the following boundary condition for the zeta potential 
 

  ( ) ( )  and   1
d 0

0 1
dY
ψ

= ψ =ξ . (2.2) 

 
Applying the boundary conditions of (2.2) in (2.1) yields: 
 
  KY KY

1 2c e c e−ψ = + , (2.3) 
 

where   1
1 2K Kc c

e e−
ξ= =
+

. (2.4) 
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In the flow formation, the governing continuity equation and Navier-Stokes equation are, respectively, given 
in vector notations as: 
 

  u v wU 0
x y z

∂ ∂ ∂∇ = + + =
∂ ∂ ∂




. (2.5) 

 

  ( ) .2U U U
t

P U F
 ∂ρ + ∇ = −∇ ∂ 

+ + μ∇


    
  (2.6) 

 
where  μ  fluid viscosity. The Lorentz force is the net body force that is exerted on a fluid element as a result 
of an applied electric field and magnetic field. The electromagnetic body force can be defined as: 
 
  eF E J B= ρ + ×

   
. (2.7) 

 
The electromagnetic hydrodynamic flow field's energy and momentum equations are expressed as: 

i. Time periodic energy equation 
 

  ( )sin .
2

0
02

o p

QT T T t
t y Cy

∂ ∂ ∂= α + ν +  ω  ∂ ∂ ρ∂
 (2.8) 

  
ii. Temperature dependent energy equation 

 

  ( ).
2

0
0 02

o p

QT T T T T
t y Cy

∂ ∂ ∂= α + ν + −
∂ ∂ ρ∂

 (2.9)  

  
iii. Momentum equation 

 

  ( ) .x

0 0 0

22
eE0 z

0 02
B u E Bu u u g T T

t yy

ρσ σ∂ ∂ ∂= υ + ν + β − − + +
∂ ∂ ρ ρ ρ∂

 (2.10) 

 
The below dimensional boundary condition is used to solve energy equations and the momentum equation: 
 
  , ,  0t 0 u 0 T T 0 y H≤ = = ≤ ≤ , (2.11) 
 

  

( ) ( )

( ) ( )

'  ,       '           at  ,

                                        

'  ,     '          at  .

1

w

du dTu y T y T y 0
dy dy

t 0
du dTu y T y T y H
dy dy

 = α = + δ =
> 

 = −α = − δ =


 (2.12) 

 
Utilizing the dimensionless parameters in (2.13) to transform Eqs (2.8-2.12) to dimensionless equations. 
 

  uHU =
υ

,      , , ,  , δ ,
2

0
2

0

T T y t HY Pr
T T H Hω

− υ υ ωθ = = ζ = = =
− α υ

      '
H
αα = , 
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  x 0 1
x 2

0

EE εε ξ
=

ρ ν
,      * ' 

H
δδ = ,      1 0

t
w 0

T T
T T

−
ξ =

−
,      a

0
H BH σ=

ρ υ
,   

   (2.13) 

        ( ) 3
0

2
g T T H

Gr
β −

=
ν

,      
2

z
z

0

H ES σ=
υ υρ

,      ( )
2

0

w 0

Q Ha
k T T

=
−

, 

 

  
2

0Q Hb
k

= ,      0
0

vS
H

υ
= . 

 
Applying Eq.(2.13) to the dimensionless energy and momentum equations below yields: 
Time periodic energy equation; 
 

  ( )sin .
2

02
1 1S a

Pr y PrY
∂θ ∂ θ ∂θ= + +  δζ  ∂ζ ∂∂

 (2.14) 

 
Temperature dependent energy equation 
 

  ( ) .
2

0 02
1 1S b T T

Pr y PrY
∂θ ∂ θ ∂θ

 = + + − ∂ζ ∂∂
 (2.15) 

 
Momentum equation 
 

  .
2

2 2
0 z a2

U U US Gr Ha U S H ExK
yy

∂ ∂ ∂= + + θ − + − ψ
∂ζ ∂∂

 (2.16) 

 
  , ,   t 0 0 U 0 Y≤ θ = = ∀ . (2.17) 
 

  

( ) ( )

( ) ( )

*

*

 ,                 at  ,

                                        

 ,                 at  .

t
dU dU Y Y Y 0
dY dY

t 0
dU dU Y Y 1 Y 1
dY dY

θ = α θ = ξ + δ =


> 
 θ = −α θ = − δ =


. (2.18) 

 
2.2. Analytical solution 
 
 We used the Laplace transformation method to convert equations (2.14) to (2.18) from PDEs to ODEs 
in order to solve the two dimensionless energy equations and momentum equation together with their 
dimensionless boundary conditions: 
Dimensionless time periodic energy equation; 
 

  ˆ .
ˆ ˆ2

02 2 2
d d aS Pr SPr

dYdY S
θ θ δ+ − θ = −

+ δ
 (2.19)  

 
Dimensionless temperature-dependent energy equation; 
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  ˆ .
ˆ ˆ ˆ

2

02
d dS Pr SPr b 0

dYdY
θ θ+ − θ + θ =  (2.20)  

 
Dimensionless momentum equation; 
 

  ( ) .
ˆ ˆ ˆ

22
2 KY KYx z

0 1 22
E K S Had U dUS Ha S U c e c e Gr

dY S SdY
− + − + = + − − θ   (2.21) 

 
where  S is a Laplace transform parameter, while θ̂  and Û  are the temperature and velocity, respectively, in 
the Laplace domain, subject to:  
 

  

* *

* *

ˆ ˆˆ ˆ

ˆ ˆˆ

 ,       at     ,

 ,      at     .ˆ

t d UU Y 0
s Y Yt 0

1 d UU Y 1
S Y Y

 ξ θ ∂θ = + δ = δ = ∂ ∂> 
θ ∂θ = − δ = −δ = ∂ ∂

 (2.22) 

 
The method of undetermined coefficient was applied to solve Eqs (2.19) to (2.21) as shown below. 
 
2.2.1. Time periodic case 
 
 Solutions of temperature and velocity 
 
  .ˆ ' '1 2g Y g Y

3 4 2c e c e aθ = + +  (2.23) 
 
  .ˆ ' '1 2 1 2j Y j Y g Y g Y kY kY

5 6 3 4 5 6 4 7U c e c e j e j e j e j e d d−= + + + + + + +  (2.24) 
 

  ' 5 6 8 4
3

3 6 5 4

a g a gc
g g g g

−
=

−
,  ' 5 5 8 3

4
4 5 6 3

a g a gc
g g g g

−
=

−
,  ' 3 5 6 2

5
1 5 4 2

m m m mc
m m m m

−
=

−
,  ' 3 4 6 1

6
2 4 5 1

m m m mc
m m m m

−
=

−
. (2.25) 

 
The skin friction at  Y 0= and Y 1=  of the micro-channel is given by: 
 

  ( ) ' ' .
ˆ

ˆ0 1 5 2 6 1 3 2 4 5 6
dU 0

j c j c g j g j j k j k
dY

τ = = + + + + −  (2.26) 

 

  ( ) ( ).
ˆ

ˆ 1 2 1 2j j g g k k
1 1 5 2 6 1 3 2 4 5 6

dU 1
j c e j c e g j e g j e d ke d ke

dY
−τ = +′ −′− = − + + +  (2.27) 

 
The mass flow rate ( )Q  is given as: 
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( ) ( ) ( ) ( )

( ) ( ) ( )
.

ˆ
'

ˆ
'1 2 1

2

j j g1
5 5 3

1 2 10
g k k

3 5 6
4 7

2

c e 1 c e 1 j e 1
Q U Y dY

j j g

j e 1 j e 1 j e 1
d d

g k k

−

− − −
= = + + −

− − −
+ + − + +


 (2.28) 

 
2.2.2. Temperature dependent case 
 
 Solutions of temperature and velocity: 
 

  * * * .ˆ ' '1 2h Y h Y
3 4c e c eθ = +  (2.29) 

 

  * * * .ˆ ' '1 2 1 2j Y j Y h Y h Y kY kY
5 6 1 2 5 6 7U c e c e n e n e j e j e d−= + + + + + +  (2.30) 

 

  *' 4 6 7 4
3

3 6 5 4

b h b hc
h h h h

−
=

−
,   *' 4 5 7 3

4
4 5 6 3

b h b hc
h h h h

−
=

−
,   *' 5 7 8 4

5
3 7 6 4

n n n nc
n n n n

−
=

−
,   *' .5 6 8 3

6
4 6 7 3

n n n nc
n n n n

−
=

−
 (2.31) 

 
The skin friction at  Y 0= and Y 1=  of the micro-channel is given by: 
 

  ( )*
* * * .

ˆ
ˆ ' ' '0 1 5 2 6 1 1 2 2 5 6

dU 0
j c j c h n h n j k j k

dY
τ = = + + + + −  (2.32) 

 

  ( ) ( )*
* * * .

ˆ
ˆ ' 1 2 1 2j j h h k k

1 1 5 2 6 1 1 2 2 5 6
dU 1

j c e j c e h n e h n e d ke d ke
dY

−τ = − = − + + −′ ′ + +  (2.33) 

 
The mass flow rate ( )Q  is given as: 
 

  

 ( ) ( ) ( ) ( )

( ) ( ) ( )

* *
*

' '

.

' ˆ
1 1 1

1

d d b1
5 5 1

1 1 10
a k k

2 5 6
7

2

c e 1 c e 1 p e 1
Q U Y dY

d d b

p e 1 d e 1 d e 1
d

b k k

−

− −

− − −
= = − + −

− − −
+ + − +


 (3.34) 

 
2.3. Riemann-sum approximation (RSA) 
 
 To achieve the goal of the article, it is required to convert the analytical solutions of Eqs (2.23)-(2.34), 
which are in the Laplace domain to the time domain. A numerical approach based on the Riemann-sum 
approximation (RSA) as used in Jha and Apere [46], Jha and Oni [47], Khadrawi and Al-Nimr [48], and Tzou 
[49] is employed. The numerical the Laplace inversion approach, according to Jha and Oni [47] has shown to be 
a dependable and practical instrument for Laplace inversion. This technique inverts the temperature distribution, 
velocity profile, skin friction, and mass flux, which are all in the Laplace domain, to the time domain. 
 
2.3.1. Time periodic (TP) case 
 

  ( ) ( ) ( )ˆ, , , . , .ˆ
E

n
TP

n 1

e 1 inY y Re Y 1 0 Y 1
2

ε

=

ζ   πθ ζ = θ ε + θ ε + − ≤ ≤  ζ ζ   
  (2.35) 
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  ( ) ( ) ( )ˆ, , , . , .ˆ
E

n
TP

n 1

e 1 inU Y U y Re U Y 1 0 Y 1
2

εζ

=

  πζ = ε + ε + − ≤ ≤  ζ ζ   
  (2.36) 

 
Skin friction  
 

  ( ) ( ), , , .ˆ ˆ
E

n
0 0 0

n 1

e 1 in0 Re 0 1 Y 0
2

εζ

=

  πτ = τ ε + τ ε + − =  ζ ζ   
  (2.37) 

 

  ( ) ( ), , , .ˆ ˆ
E

n
1 1 1

n 1

e 1 in0 Re 1 1 Y 1
2

εζ

=

  πτ = τ ε + τ ε + − =  ζ ζ   
  (2.38) 

 
Mass flow rate  
 

  ( ) ( ) ( ) , .ˆ ˆ
E

n

n 1

e 1 inQ Q Re Q 1 0 Y 1
2

εζ

=

  πζ = ε + ε + − ≤ ≤  ζ ζ   
  (2.39) 

 
2.3.2. Temperature dependent (TD) case 
 

  ( ) ( ) ( )* * *, , , . , .ˆ ˆ
E

n
TD

n 1

e 1 inY Y Re Y 1 0 Y 1
2

εζ

=

  πθ ζ = θ ε + θ ε + − ≤ ≤  ζ ζ   
  (2.40) 

 

  ( ) ( ) ( )* * *, , , . , .ˆ ˆ
E

n
TD

n 1

e 1 inU Y U y Re U Y 1 0 Y 1
2

εζ

=

  πζ = ε + ε + − ≤ ≤  ζ ζ   
  (2.41) 

 
Skin friction temperature dependent case 
 

  ( ) ( )'
* * *' ' , .ˆ , . , ˆ

E
n

0 0 0
n 1

e 1 in0 Re 0 1 Y 0
2

εζ

=

  πτ = τ ε + τ ε + − =  ζ ζ   
  (2.42) 

 

  ( ) ( )* * *' ' , ' , ˆ ,ˆ
E

n
1 1 1

n 1

e 1 in0 Re 1 1 Y 1
2

εζ

=

  πτ = τ ε + τ ε + − =  ζ ζ   
 . (2.43) 

 
Mass flow rate 
 

  ( ) ( ) ( )* * *' ' , ' , .ˆ ˆ
E

n

n 1

e 1 inQ Q 0 Re Q Y 1
2

εζ

=

  πζ = ε + ε + −  ζ ζ   
  (2.44) 

 
3. Results and discussions 
 
 With the help of the MATLAB program version R2014a, the findings and explanation of the 
dimensionless and semi-analytical solutions obtained in section 2 are presented graphically. 
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3.1. Results and discussion of the problem 
 
 The effect of dimensionless time ( )ζ , Prandtl number ( )Pr , Hartmann number ( )Ha  Grasshof number 

( )Gr  electric field strength ( ) zS  and ( ) xE  on temperature and velocity profile for suction and injection 
scenario on time-periodic and temperature-dependent cases are graphically presented in figures. Furthermore, 
parameters affecting suction and injection in skin friction ( ),0 1τ τ , and mass flow rate ( )Q  are presented 
graphically also. During the computation, the numerical value for ζ  and Pr  are as follows; unless otherwise 
stated: time . .0 2 5 0≤ ζ ≤  and Prandtl numbers ( )Pr  are .Pr 0 71=  (air) and .Pr 7 0=  (water). The reference 

values for the time parameter ( )ζ , Pr , Ha , Gr , ( )zS  and ( ) xE  are 5.0, 0.71, 2.0, 1.0, 2 and -2, respectively. 

The effect of the Debye-Huckel parameter ( )κ on the electric potential in the microchannel for a symmetric 
zeta-potential condition is depicted in Fig.2. It was found that when Κ  rises in the microchannel, the electric 
potential falls. It was discovered that the wall Y 1=  of the microchannel had the highest electric potential. 
This is consistent with the zeta-potential requirement prescribed at the wall  Y 1= . 
 

 
 

Fig.2. Electric potential for different values of κ . 
 

           
              (A)                                                                        (B) 

Fig.3. Temperature distribution for  .Pr 0 71=  and .7 0 . 
 

 The effect of Pr  on the temperature distribution is shown in Fig.3. Fig. 3A takes into account the 
time-periodic condition, whereas Fig.3B depicts the temperature-dependent situation. Both figures 
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demonstrated that the temperature was larger when .Pr 7 0=  than when .Pr 0 71=  in injection scenario while 
it was larger when .Pr 0 71=  than when  .Pr 7 0=  in suction situation. The cause of this behavior is thought to 
be the injection of fluid particles through the permeable wall, which displace the cold fluid and raise the 
temperature in the microchannel. Clearly, the two figures showed that Pr  has a similar effect in time-periodic 
and temperature dependent cases. 
 The influence of time ( )ζ  on the temperature distribution is presented in Fig.4. The time-periodic 
situation is illustrated in Fig.4A, where the temperature is continuously fluctuating as ζ  increases. This is as 
a result of its time-periodic character in the system. Fig. 4B is applicable for the temperature-dependent 
scenario; it demonstrates how the temperature rises with an increase in ζ  and reaches a steady state as .ζ → ∞  
Additionally, injection temperatures are greater than suction temperatures, which is consistent with assumption 
that the injection of fluid particles through the permeable wall, displaces the cold fluid and raises the 
temperature in the microchannel. 
 

            
                   (A)                                                                         (B) 

Fig.4. Temperature distribution for different values of time ( )ζ . 
 

           
                    (A)                                                                       (B) 

Fig.5. Velocity profile for different values of Ha . 
 
The Hartmann number  Ha 's influence on the velocity profile is seen in Fig.5. Fig. 5A shows how Ha  affected 
the time-periodic instance, whereas Fig.5B shows how Ha  contributed to the temperature-dependent instance. 
It is clear from both figures that a rise in Ha  causes a fall in fluid velocity while a fall in Ha  causes a rise in 
fluid velocity. It is true that Ha  reduces fluid velocity because the Lorentz force opposes fluid velocity. 
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 The consequence of the Grashof number ( )Gr  on fluid velocity is shown in Fig.6. The time periodic 
scenario is illustrated in Fig.6A, while the temperature-dependent situation was made clear in Fig.6B. As seen 
in the two figures, a rise in Gr  causes the fluid velocity to increase in both situations, whereas a reduction in 
Gr  causes the velocity to decrease. This is due to weakening of bonds between fluids because of the rise in 
temperature of the walls caused by an increase in Gr , which also made it possible for velocity to be much 
higher in the injection wall than in the suction wall. 

 

           
                     (A)                                                                        (B) 

Fig.6. Velocity profile for different values of ( )Gr . 
 
The impact of electric field strength ( )Sz  in the z-direction on the velocity profile is shown in Fig.7. Figure 
7A illustrates the effects of Sz  in the time-periodic scenario, while Fig.7B shows 'Sz s  behavior in the 
temperature-dependent situation. The two graphs clearly demonstrate that when Sz  grows, velocity increases. 
This is correct because a greater velocity profile caused by an increase in Sz  might result in stronger auxiliary 
forces in the electric and magnetic fields. 
 

           
(A) (B) 

Fig.7. Velocity profile for different values of ( )Sz . 
 
Figures 8A and 8B show, for temperature-dependent and time-periodic velocity profiles, respectively, how the 
electric field ( )Ex  affects the velocity profile. In these figures, it can be seen that a drop in Ex  results in an 

increase in the velocity profile whereas an increase in Ex  results in a decrease in the velocity profile. This is 
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due to the fact that as Ex  grows, stronger auxiliary forces in the electric and magnetic field might appear, 
which causes a drop in velocity profile. 
 

           
                    (A)                                                                        (B) 

Fig.8. Velocity profile for different values of ( )Ex . 
 
Figures 9A and 9B show the impact of time ( )ζ  for time-periodic and temperature-dependent situations, 
respectively in the flow formation. Fig. 9A makes it evident that the velocity profile keeps increasing with ζ , 
and then alternates when ζ → ∞ . This is caused by the time periodicity of velocity. On the other hand, Fig.9B 
shows that the velocity increases as  ζ  rises and attains a steady state  ζ → ∞ . 
 

           
                     (A)                                                                        (B) 

Fig.9. Velocity profile for different values of time ( )ζ . 
 
The impact of the symmetric wall zeta-potential on the velocity profile for various values of Κ  is shown in 
Fig.10, while Fig.10B shows the temperature-dependent situation, Fig.10A shows the time-periodic scenario. 
The aforementioned figures show that, for smaller values of Κ , the formation of flow is independent of the 
magnitude of the wall symmetric zeta potential. However, the effect of Κ  on flow formation is to increase the 
microchannel's velocity profile. This might be described by the presence of random EDL forces on the 
microchannel's walls, which accelerate fluid velocity. 
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                    (A)                                                                        (B) 

Fig.10. Velocity profile for different values of ( )Κ . 
 
Figures 11A and 11B demonstrate the joint effect of time ( )ζ  and Κ  on the skin-friction at  Y 0=  in time-
periodic and temperature-dependent cases, respectively. These figures show that the skin friction rises as ζ  
and Κ  grow. It is essential to see that the skin-friction alternates when ζ → ∞  in the time-periodic case and 
attains a steady state in the temperature-dependent case. It is noteworthy to observe, however, that for high 
values of Κ  in the suction wall, the skin friction is only weakly reliant on Κ . This is because the electrokinetic 
influence on the skin friction is eliminated as Κ → ∞  and the EDL length eventually goes to zero. 
Figures 12A and 12B exhibit the joint effect of time ( )ζ  and Κ  on the skin-friction at  Y 1=  in time-periodic 
and temperature-dependent cases, respectively. These figures show that the skin friction rises as ζ  and Κ  
grow. It is crucial to see that the skin-friction alternates when ζ → ∞  in the time-periodic case and attains a 
steady state in the temperature-dependent case.  
 

           
                      (A)                                                                         (B) 

Fig.11. Skin-friction for combined effect of  and ζΚ  at Y 0= . 
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                     (A)                                                                        (B) 

Fig.12. Skin-friction for the combined effect of  and ζΚ  at Y 1= . 
 
The combined impact of Κ  and ζ on the mass flow rate is seen in Fig.13. The time-periodic instance in the 
mass flow rate is illustrated in Fig13A for different values of Κ  and ζ . It is clear from the figure that a rise 
in Κ  increases the mass flow rate likewise the flow rate increases as ζ increases, then oscillates as ζ → ∞ . 
The fact that the mass flow rate increases with an increase in Κ  is due to the role of Κ  in enhancing the 
velocity profile. The temperature-dependent case in the mass flow rate is shown in Fig.13B for different values 
of Κ  and  ζ . It was observed from the figure that an increase in Κ  boosts the mass flow rate, also the mass 
flow rate increases when ζ  increases and reaches a steady state as ζ → ∞ . 
 

          
                     (A)                                                                      (B) 

Fig.13. Mass flow rate for the combined effect of  and ζΚ . 
 
4. Conclusion 
 
 The unsteady electromagnetohydrodynamic natural convection flow with electroosmotic effect 
through a vertical plate with slip coefficient at the walls is analyzed. The second order PDE governing the 
energy and momentum equations are transformed to ordinary differential equation (ODE) using the Laplace 
transform method. A semi-analytical solution is obtained by the Riemann Sum Approximation (RSM). The 
changes of the dimensionless velocity profiles for various parameters are visually presented and thoroughly 
described. From the results of the theoretical study discussed herein, the following are key conclusions that 
may be succinctly made. 
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1.  The fluid velocity increases as the Hartmann number ( )Ha  and electric field parameter ( )Ex  drop, 
and decreases when they rise. 

2. A rise in  Gr  and zS  as well as an increase in ζ  contribute to an increase in velocity.  
3. The variation of Κ  and ζ  in the skin-friction is shown graphically and interpreted, 
4. The mass flow rate is also shown and presented in terms of Κ  and ζ , graphs indicate how changes in 

Κ  and ζ  directly affect the flow rate. 
 
The findings of Oni and Jha [16], Wang et al. [19] and Kundu and Saha [45] are all in agreement with this 
study. However, it is important to note that the current study modifies Wang [19] and Kundu and Saha [45] by 
taking into account a transient natural convection flow in EMHD. 
 
Nomenclature 
 
 a  – heat source/sink parameter (time-periodic) 
 b  – heat source/sink parameter (temperature-dependent) 
 0B  – constant applied magnetic field  
 xE  – electric field in x direction 
 xE  – electric field (dimensionless) 
 zE  – electric field in z direction 

 Gr  – Grashof number 
 g  – gravity acceleration  

 H  – distance 
 Ha  – Hartmann number (dimensionless magnetic field parameter) 
 Pr  – Prandtl number 
 Q  – mass flow rate (dimensionless) 
 0Q  – dimensional heat source  

 S  – Laplace parameter 
 0S  – suction/injection parameter 
 zS  – electric strength in z direction (dimensionless) 

 T  – dimentional temperature of the fluid 
 0T  – initial temperature (dimentional) 
 wT  – wall temperature (dimentional) 

 t  – time of flow (dimentional) 
 u  – dimensional velocity of the fluid 
 U  – dimensionless velocity 
 
Greek symbols 
 
 'α  – thermal diffusivity 
 α  – dimensionless thermal diffusivity 
 β  – coefficient of thermal expansion 
 δ  – constant rotational velocity 
 'δ  – dimensional temperature jump-length  
 *δ  – dimensionless temperature jump-length 
 ε  – permittivity of space  
 0ε  – permittivity of medium  
 ζ  – dimensionless time 
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 , 0 1ξ ξ  – zeta-potential 
 tξ  – Buoyancy force parameter (dimensionless) 

 θ  – temperature of the fluid (dimensionless) 
 Κ  – Debye–Hückel constant 
 eρ  – charge density 
 0ρ  – fluid density 

 σ  – electrical conductivity of the fluid 
 τ  – skin friction 
 ψ  – electric potential 
 υ  – kinematic viscosity 
 ω  – frequency of time-periodic heating 
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